Source code for soft4pes.control.mpc.controllers.rl_grid_mpc_curr_ctr

"""
Model predictive control (MPC) for the control of the grid current (RL grid).
"""

from types import SimpleNamespace
import numpy as np
from soft4pes.utils import dq_2_alpha_beta
from soft4pes.control.common.controller import Controller


[docs]class RLGridMpcCurrCtr(Controller): """ Model predictive control (MPC) for RL grid. The controller aims to track the grid current in the alpha-beta frame. Parameters ---------- solver : solver object Solver for an MPC algorithm. lambda_u : float Weighting factor for the control effort. Np : int Prediction horizon steps. disc_method : str, optional Discretization method for the state-space model. Default is 'forward_euler'. Attributes ---------- lambda_u : float Weighting factor for the control effort. Np : int Prediction horizon. disc_method : str Discretization method for the state-space model. u_km1_abc : 1 x 3 ndarray of floats Previous (step k-1) three-phase switch position or modulating signal. state_space : SimpleNamespace The state-space model of the system. solver : solver object Solver for MPC. vg : 1 x 2 ndarray of floats Grid voltage [p.u.]. C : 2 x 2 ndarray of ints Output matrix. """ def __init__(self, solver, lambda_u, Np, disc_method='forward_euler'): super().__init__()
[docs] self.lambda_u = lambda_u
[docs] self.Np = Np
[docs] self.u_km1_abc = np.array([0, 0, 0])
[docs] self.state_space = None
[docs] self.solver = solver
[docs] self.vg = np.array([0, 0])
[docs] self.disc_method = disc_method
# Output matrix
[docs] self.C = np.array([[1, 0], [0, 1]])
[docs] def execute(self, sys, kTs): """ Perform MPC and save the controller data. Parameters ---------- sys : system object System model. kTs : float Current discrete time instant [s]. Returns ------- 1 x 3 ndarray of floats Three-phase switch position or modulating signals. """ # Get the discrete state-space model of the system if self.state_space is None: self.state_space = sys.get_discrete_state_space( self.Ts, self.disc_method) # Get the grid voltage and save it for future use self.vg = sys.get_grid_voltage(kTs) # Get the reference for current step ig_ref_dq = self.input.ig_ref_dq # Get the grid-voltage angle and calculate the reference in alpha-beta frame theta = np.arctan2(self.vg[1], self.vg[0]) ig_ref = dq_2_alpha_beta(ig_ref_dq, theta) # Predict the current reference over the prediction horizon # Make a rotation matrix Ts_pu = self.Ts * sys.base.w delta_theta = sys.par.wg * Ts_pu R_ref = np.array([[np.cos(delta_theta), -np.sin(delta_theta)], \ [np.sin(delta_theta), np.cos(delta_theta)]]) # Predict the reference by rotating the current reference y_ref = np.zeros((self.Np + 1, 2)) y_ref[0, :] = ig_ref for ell in range(self.Np): y_ref[ell + 1, :] = np.dot(R_ref, y_ref[ell, :]) # Solve the control problem u_abc = self.solver(sys, self, y_ref) self.u_km1_abc = u_abc self.output = SimpleNamespace(u_abc=u_abc) return self.output
[docs] def get_next_state(self, sys, xk, u_abc, k): """ Get the next state of the system. Parameters ---------- sys : system object The system model. xk : 1 x 2 ndarray of floats The current state of the system. u_abc : 1 x 3 ndarray of floats Converter three-phase switch position or modulating signal. k : int The solver prediction step. Returns ------- 1 x 2 ndarray of floats The next state of the system. """ # Get the grid voltage at step k by rotating it Ts_pu = self.Ts * sys.base.w delta_theta = k * sys.par.wg * Ts_pu R = np.array([[np.cos(delta_theta), -np.sin(delta_theta)], \ [np.sin(delta_theta), np.cos(delta_theta)]]) vg_k = np.dot(R, self.vg) return np.dot(self.state_space.A, xk) + np.dot( self.state_space.B1, u_abc) + np.dot(self.state_space.B2, vg_k)