soft4pes.control.mpc.solvers.mpc_bnb#
Branch-and-bound solver for model predictive control (MPC).
Classes#
Branch-and-bound (BnB) solver for model predictive control (MPC). |
Module Contents#
- class soft4pes.control.mpc.solvers.mpc_bnb.MpcBnB(conv)[source]#
Branch-and-bound (BnB) solver for model predictive control (MPC).
- Parameters:
conv (converter object) – Converter model.
- U_seq[source]#
Sequence of three-phase switch positions (switching sequence) with the lowest cost.
- Type:
1 x 3*Np ndarray of ints
- __call__(sys, ctr, y_ref)[source]#
Solve MPC problem by using a simple BnB method.
- Parameters:
sys (system object) – System model.
ctr (controller object) – Controller object.
y_ref (ndarray of floats) – Reference vector [p.u.].
- Returns:
u_abc – The three-phase switch position.
- Return type:
1 x 3 ndarray of ints
- solve(sys, ctr, x_ell, y_ref, u_ell_abc_prev, ell=0, J_prev=0)[source]#
Recursively compute the cost for different switching sequences.
- Parameters:
sys (object) – System model.
ctr (object) – Controller object.
x_ell (ndarray of floats) – State vector [p.u.].
y_ref (ndarray of floats) – Reference vector [p.u.].
u_ell_abc_prev (1 x 3 ndarray of ints) – Previous three-phase switch position.
ell (int) – Prediction step. The default is 0.
J_prev (float) – Previous cost. The default is 0.